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DopamineB-monooxygenase (M) and peptidylglycinex-ami-
dating monooxygenase (PAM) belong to a small family of homolo-
gous copper proteins that are localized to neurosecretory vesicles
and catalyze the production of neurohormones and neurotrans-
mittersi—3 The X-ray structure for the hydroxylating domain of
PAM, referred to as peptidylglycine-hydroxylating monooxyge-
nase (PHM), indicates two copper centers that are separated by a
distance of 16-11 A. The protein structure changes little upon the
binding of a peptide analogue and, overall, lacks a hinge motif that
would allow the copper centers to approach one another during
catalysi4¢® (Figure 1).

It has been established that both copper centers in PAM and
DpM cycle between theit-1 and+2 valence states during catalysis,
necessitating an electron transfer from the copper site that functions
in electron storage (generally referred to asGuCu,) to the site
that binds @ and substrate, producing hydroxylated producty(Cu
or C).5” A number of mechanisms have been proposed for the
long-range electron transfer betweenyGand Cy, that include:

(i) the use of a one-electron reduced oxygen species (superoxid
ion) as an electron conduit from Guo Cuy;8 (ii) the involvement

of a protein network, located between the two copper-binding a-position of the C-terminally extended glycine) and characterized

eFigure 1. Interdomain structure of PHM witiN-acetyl-diiodo-tyrosyl-
glycine (Ac-Dil-YG) bound close to Gyt Modified from ref 5.

domains, as the pathway for intermetal electron trarfséer (iii) kinetically, where L is either protium or deuteriuf:
the participation of substrate itself in the electron-transfer pro-
cessx916 I I

A recent study of the relationship betweep @nsumption and 4"C'N":'CL2'C°2' DNS'GLY'GLY'SEZR'C'NH'C'-TCOZ_

substrate hydroxylation in M indicates complete coupling for
these processes using substrates that vary in reactivity by ca. 3 Modeling of these substrates into the active site by complexation
orders of magnitud& This rules out a mechanism in which free  of the C-terminal carboxylate to Gushows that2, but not1, is
superoxide ion is used as a courier for electron transfer from Cu able to bridge the distance from the (Cto the Cuy, site. In the

to Cuy. Similarly, using site specific mutagenesis to investigate case of1, the amide carbonyl of the C-terminal glycine is at a
the role of an interdomain, hydrogen-bonded protein network, distance of ca6 A from Cu, requiring that solvent water complete
Eipper and co-workers have recently shown that mutation of a key the pathway for electron transfer.

residue (Q170A) in PAM gives rise to very little change in enzyme  Data were collected under conditions where the substrate binds
activity, ruling out this pathway for electron transfer. These authors to the enzyme prior to molecular,Qwith a difference betweeh
propose that the substrate may undergo a translocation from theand2 being the rate of loss of substrate from the Ecomplex in

Cuu site (Figure 1) to the cavity between the copper centers, as arelation to the binding @(rapid in the case of and slow for2).13
means of facilitating the reactién.

. . k k k
In_the present study, we have examln_ed the hypotheS|s_that the E+S—=ES+ 0, == E-5:0,—» E-P E» Eep )
peptide backbone of substrate may provide a pathway for interdo- k-1 k-2
main electron transfer. Two substrates that differ greatly with regard o ) )
to steric bulk, hydrophobicity, and most importantly lengttaqd The key kinetic parameters obtained by measuring rates as a

2 below) were synthesized (with protium or deuterium in the f_un_ctlon of the Q concentration ardcal Km(o?) (obtained in the
limit of low O, and saturating substrate, which measures all steps
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Table 1. Comparison of Kinetic Parameters for Truncated and Scheme 1. Postulated Mechanism for PHM in Which Interdomain
Extended Peptide Substrates with PAM? Electron Transfer Occurs after C—H Activation?
kcalle(OZ)b kcalc
substrate (ML, 577 Plkeal Kn(O2)] () Okt
1 0.14 (0.01) 3.1(0.3) 37 (0.1) 1.0(0.2) o K
2 0.23 (0.03) 2.3(0.2) 17 (0.8) 1.0(0.2)

_Que()(02)
s\

aData collected at pH 6, 37C by following the decrease of oxygen
concentration using a YSI model 5300 biological oxygen monitor. Reaction
mixtures contained 100 mM MES, 30 mM KCI, 10 mM ascorbateu0
ml catalase, kM CuSQ, and varying levels of @and peptide. Enzyme
is a type A rat medullary carcinoma PAM expressed in Chinese hamster
ovary cells. Extrapolated to saturating concentrations of substfafea-
trapolated to saturating concentrations of substrate ané E¥om ref 14.
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limiting steps for comparison th. As shown in Table 1k../Kn(O5)

is increased less than 2-fold for the extended peptide sub&rate
and this is accompanied by a small decrease in the measured deu-
terium isotope effect. It appears that fbthe overall hydroxylation
process is slightly increased relative tg @inding but that the
magnitude okz is similar for the truncated and extended peptides.

In the case ok, substrate? is about 2-fold slower and there is aFrom ref 10.
no measurable KIE with either substrate. The absence of a KIE on

keat indicates that €H abstraction is fast relative to other rate- MuSt tak(7e place to ca. 7 R.In a related mechanism, Chen and
limiting steps that may include interdomain electron transfer as well S0lomor” have suggested that electron transfer occurs after both
as product release. C—H abstraction and oxygen insertion. While rate constants for

Two reaction mechanisms can be advanced féiznd PAM electron transfer through water over distances greater than 10 A

e . . . 5 i

in which the interdomain electron transfer takes place either before &€ Very slowt®a rate constant for transfer aveAis expectedlto

or after the G-H abstraction step. In the former case, electron- P Significantly faster than the measuied values of 1737 s*.
transfer contributes tda/Kn(O2), and in the latter case, it is ~©OVerall, Scheme 1 and related mechanisShufer a tractable
contained inks: The close similarity of the primary parameters resolution to the available data and to the long-standing mechanistic
and their isotope effects for the enormously different substrate €nigma of I¥M and PAM. Given the solvent-accessible nature of
structures of1 and 2, leads us to conclude thahe extended  the PHM site (Figure 1), investigations, for example, of the impact
backbone of naturally occurring peptide substrates is unlikely to ©f Mixed solvents on the enzymatic catalytic efficiency ¢iND

constitute a pathway for full or partially rate-limiting, long-range ~ @nd/or PAM may prove to be instructive regarding the proposed
electron transfer “through water” electron-transfer proce'$s.

In principle, electron transfer may be sufficiently fast that it does
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